THE COMPLETE INTERSECTION LOCUS OF CERTAIN IDEALS

Wolmer V. VASCONCELOS*
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Communicated by J.D. Stasheff
Received 27 November 1984
Revised 1 April 1985

Dedicated to Jan-Erik Roos on his 50-th birthday

Introduction

Let R be a Noctherian local ring with maximal ideal m and dimension d. The most primitive quantities attached to an ideal I are its height, ht (I), and its minimum number of generators, $v(I)$. The fundamental relation between $\mathrm{ht}(I)$ and $v(I)$ is provided by Krull's theorem:

$$
\begin{equation*}
v(I) \geq \operatorname{ht}(I) \tag{1}
\end{equation*}
$$

The case of equality is noteworthy enough and I will be called a complete intersection if it so happens. (Strictly, this terminology is used when the ideal is generated by a regular sequence, but the two notions coincide in what will be our standard context - that of Cohen-Macaulay rings.)

To bridge the gap between $v(I)$ and $h t(I)$ several other measures have been introduced. We single out:
(i) $\operatorname{ara}(I)=$ arithmetical rank of $I:=$ the least integer r such that the radical of I is the radical of an r-generated ideal.
(ii) $l(I)=$ analytic spread of $I:=$ Krull dimension of the algebra $\oplus I^{t} \otimes R / m$, that is, $1+$ degree of the (Hilbert) polynomial that reads $\operatorname{dim}_{R / m}\left(I^{t} / m I^{t}\right), t \gg 0$. If the residue field of R is infinite - an innocous hypothesis $-l(I)$ is the number of generators of the smallest ideal J such that $I^{t+1}=J \cdot I^{t}$ for some t.
(iii) $\operatorname{cd}(I)=$ cohomological dimension of $I:=\sup \left\{j \mid H_{I}^{j}(R) \neq 0\right\}$.

The inequality above refines then to [19]:

$$
\begin{equation*}
v(I) \geq l(I) \geq \operatorname{ara}(I) \geq \operatorname{cd}(I) \geq \mathrm{ht}(I) \tag{2}
\end{equation*}
$$

Another natural approach to the comparison between $h t(I)$ and $v(I)$ - and for simplicity we now assume I to be height unmixed - is through the propertics of the

[^0]set of primes P where the localization I_{P} is a complete intersection. This defines an open set $D(J)$ of $\operatorname{Spec}(R)$ and will be denoted CIL(I). If R is a Cohen-Macaulay ring and P is a minimal prime of J, then I / I^{2} determines a vector bundle on the punctured spectrum of the local ring $(R / I)_{P}$. The codimension of $\operatorname{CIL}(I), \operatorname{ht}(J)$, shall be denoted by $c(I)$. One of our aims here is to examine how some of the numbers above are reflected on $c(I)$.

Broadly speaking our aim here is to estimate $c(I)$ for ideals where the conormal module, I / I^{2}, is 'sufficiently well known'. An extreme case of this formulation is the following conjecture: Let I be an ideal of the regular local ring R. If I / I^{2} has finite projective dimension over R / I, then I is a complete intersection. From the cases settled thus far the emerging evidence for it and for the similar conjectures on the other (co-)normal modules is quite strong. Furthermore we shall be interested in those fragments of the hypothesis above that lead to sharp estimates of $c(I)$ in more general cases.

We shall now describe the contents of this paper. In Section 1 we recall a general estimate of Faltings [8] on $c(I)$, as recently improved by Huneke [15]. We shall also derive a bound for $c(I)$ in terms of the number of generators and relations of I. These results shall provide the backdrop for the especial estimates of the paper proper.

In Section 2 we discuss an enrichment by Gulliksen [10] of the Tate's resolution of R / I. A minor rephrasing of his proof leads, essentially, to the following assertion: Let R be a local ring and let I be an ideal of finite projective dimension; the first homology module, H_{1}, of the Koszul complex K built on a minimal generating set of generators of I does not admit a nonzero (R / I)-free summand. As a consequence one can write bounds for $c(I)$ that may, under certain conditions, be much sharper than those of Section 1.

The conjectural homological rigidity for I / I^{2} (cf. [24], [25]) is stated in Section 3 - i.e. whether for an ideal I of a regular ring $R, 0$ and ∞ are the only possible values for $\operatorname{pd}_{R / I}\left(I / I^{2}\right)$. Along with analogs for the other (co-)normal modules it asks whether local complete intersections are characterized by the finiteness of the projective dimension of these modules. The results of Section 2 could then be stated as asserting that $\mathrm{pd}_{R / I}\left(I / I^{2}\right) \neq 1$.

In the next section it is shown that the canonical module of R / I, for the ideals in the conjecture, has the expected form: it is cyclic. This says that the Cohen-Macaulay ideals in the conjecture are in fact Gorenstein ideals, and settles the question in several cases - e.g. arbitrary ideals of height two in rings containing a field.

In Section 5 we use available information on the depths of the Koszul homology modules to resolve other instances of the conjecture. Finally we discuss the form the estimates of Section 1 assume when applied to ideals satisfying $\operatorname{pd}_{R / I}\left(I / I^{2}\right) \leq 3$. It allows for extending the catalogue of solved cases up to various Cohen-Macaulay ideals of height four.

1. General bounds

There are some surprisingly sharp bounds on $c(I)$ that result directly from the intersection theorem of Serre and of novel forms of the theorem of Krull. We begin with the latter.

The following result of Bruns [3] represents the breaking down of the classical estimates of Eagon-Northcott [5] for the size of determinantal ideals.
(1.1) Theorem. Let R be a commutative Noetherian ring and let ϕ be an $m \times n$ matrix with entries in R. For each integer r, denote by $I_{r}(\phi)$ the ideal generated by the r-sized minors of ϕ. If $I_{t}(\phi) \neq R$ and $I_{t+1}(\phi)=0$, then $\mathrm{ht}\left(I_{t}(\phi)\right) \leq m+n-2 t+1$.

This has the following consequence on $c(I)$.
(1.2) Corollary. Let R be a Cohen-Macaulay ring and let I be an unmixed ideal that is not a local complete intersection. If I admits a presentation

$$
R^{m} \xrightarrow{\Phi} R^{n} \rightarrow I \rightarrow 0 .
$$

Then $c(I) \leq m-n+3 h t(I)+1$.
Proof. Tensoring the presentation of I by R / I and applying (1.1) to $\phi=\Phi \otimes R / I$ we get (with $g=h t(I)$).

$$
h t\left(I_{n-g}(\phi)\right) \leq m+n-2(n-g)+1
$$

Since $I_{n-g}(\phi)$ defines the free locus of I / I^{2}, reading this estimate in $\operatorname{Spec}(R)$ we get the asserted inequality.

Remarks. (a) If I is a perfect ideal of height 2 , then $m=n-1$, so that $c(I)<6$ (cf. [22]).
(b) If I is a Gorenstein ideal of height 3 , then one obtains $c(I) \leq 10$. This is the estimate of [4] and it follows from their structure theorem that this bound is sharp. If I is just assumed to be Cohen-Macaulay, from [11] one can conclude that there is enough room - i.e. with $c(I) \leq 10-$ to make I Gorenstein.

When the number of relations, m, is large, this estimate is rather poor. For small $n=v(I)$ the following result of Faltings [8] - as recently improved upon by Huneke [15] - furnishes very good bounds.
(1.3) Theorem. Let R be a regular local ring and let I be an unmixed ideal. If I is not a complete intersection, then $c(I) \leq l(I)+2 \mathrm{ht}(I)-1$.

Remark. If $v(I)=g+1(g=h t(I))$ - i.e. if I is an almost complete intersection, then $c(I) \leq 3 g$.

If I is Cohen-Macaulay this estimate may be improved (for $g>2$) down to $c(I) \leq 3+2 g$. Indeed for this bound it follows from [11] that I must be a Gorenstein ideal - which in this case implies that I is a complete intersection (see also Section 2). One condition that ensures that I is Cohen-Macaulay is the following. Assume that $S(=R / I)$ satisfies Serre's condition S_{3} and that for each prime ideal \mathbf{p} of S, depth $S_{\mathbf{p}}>\frac{1}{2} \operatorname{dim} S_{\mathbf{p}}$. As the canonical module of an almost complete intersection always satisfies the condition [1]

$$
\operatorname{depth} W \geq \inf \{\operatorname{dim} S, 2+\operatorname{depth} S\}
$$

again the duality theorem of [11] implies that I must be Cohen-Macaulay.

2. Koszul homology. I

Broadly speaking we shall view the homology of the Koszul complex \mathbf{K} built on a set \mathbf{x} of generators of the ideal I as an intermediary between the properties of the syzygies of I (over R) and those of I / I^{2} (over R / I) (cf. [21]). Of particular concern shall be the depth properties of the modules $H_{i}=H_{i}(\mathbf{K})$ and the inherent duality.

A key constrution here is provided by Tate's resolution of R / I : There exists a graded algebra $\mathbf{T}=\oplus T_{s}, T_{s}=$ finitely generated free R-module and a differential $d: T_{s} \rightarrow T_{s-1}$, which is a free resolution of R / I. It is obtained in the following manner. If \mathbf{K} is acyclic, $\mathbf{T}=\mathbf{K}$. Otherwise $H_{1}(\mathbf{K}) \neq 0$; add variables U_{1}, \ldots, U_{m} of degree 2 to kill the generators of H_{1} - i.e. construct a divided power algebra $\mathbf{X}=\mathbf{K}\left(U_{1}, \ldots, U_{m}\right), H_{1}(\mathbf{X})=0$. This construction is carried over to higher cycles. Gulliksen enhanced this by showing how certain derivations (i.e. derivations commuting with the differential of \mathbf{T}) of degree -2 arise. Precisely, the last lines of the proof of [10, Theorem 1.4.9] may be slightly recast: Given a commutative diagram of R-maps
where ∂ is trivial on K_{2}, it can be extended to a derivation of \mathbf{T}.
As in [10] this has the following consequences. If I is generated by $\left\{x_{1}, \ldots, x_{n}\right\}$, denote by N the ideal generated by the coefficients of the elements of Z_{1} as a submodule of K_{1}, that is, N is the ($n-1$)-Fitting ideal of I. On the other hand, let L / I be the trace ideal of H_{1} (over R / I), that is $L / I=$ ideal generated by all $\sigma(e), e \in H_{1}$, $\sigma \in H_{1}^{*}$.
(2.1) Theorem. Let R be a Noetherian ring and let I be an ideal of finite projective dimension. Then $\sqrt{N}=\sqrt{L}$. In particular, if R is a local ring and $n=v(I)$, then $L \neq R$.
(2.2) Corollary. Let R be a local ring and let I be an ideal of finite projective dimension. Denote $n=v(I), g=\mathrm{Ht}(I)$.
(a) If H_{1} is $(R / I-)$ free, then I is a complete intersection.
(b) If $\mathrm{pd}_{R / I}\left(H_{1}\right) \leq 1$, then $c(I) \leq n+1$.
(c) Let I be a Gorenstein ideal; if $\operatorname{pd}_{R / I}\left(H_{n-g-1}\right) \leq 1$, then $c(I) \leq \inf \{n+1,2 g+1\}$.

Remark. It will follow from the discussion of Section 4 that condition (c) " I is a Gorenstein ideal" may be simply replaced by " R / I satisfies Serre's condition S_{2} '. It turns out that $\operatorname{pd}_{R / I}\left(H_{n-g-1}\right)<\infty$ and the stated bound for $c(I)$ imply that the 'canonical' module, $W=H_{n-g}$, is actually R / I. This will follow from two observations:
(i) Since R / I satisfies S_{2} and I is a complete intersection in codimension one, $R / I=\operatorname{Hom}_{R / I}(W, W)$.
(ii) There exists a natural mapping

$$
\begin{aligned}
\operatorname{Hom}_{S}\left(\operatorname{Hom}_{S}(E, W), W\right) & \rightarrow \operatorname{Hom}_{S}\left(\operatorname{Hom}_{S}(E, S) \otimes W, W\right) \\
& \widetilde{\rightarrow} \operatorname{Hom}_{S}\left(\operatorname{Hom}_{S}(E, R), R\right)
\end{aligned}
$$

One will then be allowed to identity H_{n-g} and the 'determinant' of H_{n-g-1}.
Proof of (2.2). (a) follows directly from (2.1). It was the original motivation of Gulliksen.
(b) Since I may, by (a), to be assumed to be generically a complete intersection, the rank of H_{1} is $n-g$. Since it has projective dimension at most 1, by [5] - its free locus has codimension at most $n-g+1$. Seen in $\operatorname{Spec}(R)$ this is the asserted inequality.

Before proving (c) we shall need:
(2.3) Lemma. Let $\{R, m\}$ be a local ring of depth at most 1 and let E be a finitely generated R-module. If $E^{*}=\operatorname{Hom}_{R}(E, R)$ is a free R-module, then the natural mapping $E \rightarrow E^{* *}$ is a surjection.

Proof. Denote by L the kernel of the natural mapping $E \rightarrow E^{* *}$ and consider the induced exact sequence

$$
0 \rightarrow L \rightarrow E \rightarrow E^{\wedge} \rightarrow 0
$$

Our assertion is that $E^{\wedge}=E^{* *}$. Note that the mapping $E^{\wedge} \rightarrow\left(E^{\wedge}\right)^{* *}$ is an inclusion and $\left(E^{*}\right)^{*}=E^{*}$. Thus we may replace E by $\hat{E^{\wedge}}$ - i.e. we may assume that $L=0$.

Let I be the trace ideal of E; if $I=R, E$ has a free summand and we can argue by induction on the free rank of E^{*}. Assume then $I \neq R$. If depth $R=0$, this is a contradiction as otherwise I - and E^{*} along with it - would have a nontrivial annihilator. If depth $R=1, I^{-1}$ is strictly larger than R and $I^{-1} \cdot E^{*}$ is naturally embedded in E^{*}, a contradiction to the R-freeness of E^{*}.

Proof of (2.2c). From the asserted bound for $c(I)$ we may assume that I is a complete intersection in codimension at most one. Recall that there is a natural pairing in $H(\mathbf{K})$

$$
H_{i}(\mathbf{K}) \times H_{n-g-i}(\mathbf{K}) \rightarrow H_{n-g}(\mathbf{K})
$$

which is an isomorphism whenever I is a complete intersection. This defines a mapping $H_{1} \rightarrow\left(H_{n-g-1}\right)^{*}$ that identifies the last module with the second dual, $\left(H_{1}\right)^{* *}$, of H_{1}.

Consider the exact sequence

$$
H_{1} \rightarrow(R / I)^{n} \rightarrow I / I^{2} \rightarrow 0
$$

Taking double duals, we get the exact sequence

$$
0 \rightarrow H_{1}^{* *} \rightarrow(R / I)^{n} \rightarrow\left(I / I^{2}\right)^{\wedge} \rightarrow 0
$$

where $\left(I / I^{2}\right)^{n}=I / I^{2}$ modulo its torsion submodule. But the free locus of $H_{n-g-1}-$ and therefore the free locus of its dual as well - has codimension at most $n-g+1$. But if $\left(H_{1}\right)^{* *}$ is free, the free locus of $\left(I / I^{2}\right)^{\wedge}$ has codimension at most $n-(n-g)+1$. On the other hand, with $\left(I / I^{2}\right)^{\wedge}$ free of rank g it follows that I is a complete intersection (cf. [26]).

3. The (co-)normal modules

In order to obtain yet sharper estimates for $c(I)$ we have placed constraints on the resolution of the ideal I - as done in Section 1 - or on the homology of the Koszul complex since such modules have a representative set of properties that are transmitted across its linkage class, as in Section 2. From here on we place restrictions directly on the conormal bundle I / I^{2} itself. This will take the form of certain conjectures on the thus far observed homological rigidity of I / I^{2} and of the other (co-)normal modules.

Let I be an ideal of the ring R (occasionally assumed to contain a field). In general R will be taken to be regular; at least we shall assume that I has finite projective dimension. If I has height g and R is a Gorenstein ring, let W be the canonical module of R / I, Ext ${ }_{R}^{g}(R / I, R)$.

We shall denote:
(1) conormal module (of the embedding $V(I) \subset \operatorname{Spec}(R)$) $:=I / I^{2}$;
(2) normal module $:=\left(I / I^{2}\right)^{*}=\operatorname{Hom}\left(I / I^{2}, R / I\right)$;
(3) twisted conormal module $:=I / I^{2} \otimes W$.

In addition, if R is a polynomial ring over a field K of characteristic 0 , we shall also consider the (co-)tangent modules:
(4) module of K-differentials $:=\Omega(R / I, K)$;
(5) module of K-derivations $:=\operatorname{Der}_{K}(R / I, R / I)$.

If E is any of these 5 modules:
Conjecture. If $\operatorname{pd}_{R / I}(E)<\infty$, then I is locally a complete intersection.
We focus on the conormal module I / I^{2}. The assertion is that for a regular local ring R and an ideal $I, \operatorname{pd}_{R / I}\left(I / I^{2}\right)=0$ or ∞.

Remarks. (a) An early instance of this conjecture is contained in the statement of Chevalley's theorem: If both R and $S=R / I$ are regular, then I is generated by a subset of a minimal generating set of the maximal ideal of R.
(b) A naive attempt at a counter-example: Let A be a regular local ring and let M be a finitely generated module. Put $R:=\operatorname{Sym}_{A}(M)=$ symmetric algebra of M. $I:=$ augmentation ideal of R. Then $I / I^{2}=M$ so that $\operatorname{pd}_{R / /}\left(I / I^{2}\right)<\infty$. But if A contains a field, using the homogeneous version of the zero-divisior conjecture, it is easy to see that $\operatorname{pd}_{R}(I)<\infty$ only occurs in case M is a free A-module.

4. Dimension one and the canonical module

The hypothesis that one of the R / I-modules E has finite projective dimension implies that I is unmixed. It is also easy to prove - or will become clear in the more general cases we shall discuss - that I is generically a complete intersection. Now we assemble the pieces for the determination of the canonical module of R / I.

In the remainder of the paper we shall keep the following notation: $S=R / I$, $n=v(I), g=\operatorname{ht}(I)$ and $W=\operatorname{Ext}_{R}^{g}(R / I, R)$.
(4.1) Proposition. If $\mathrm{pd}_{R / I}\left(I / I^{2}\right.$ or $\left.I / I^{2} \otimes W\right) \leq 1$, then I is a local complete intersection.

Proof. For I / I^{2} the assertion follows from (2.1).
We may assume that R is a local ring. For $E=I / I^{2} \bigotimes W$ we make a reduction to the previous case. Let

$$
0 \rightarrow L \rightarrow S^{m} \rightarrow W \rightarrow 0
$$

and

$$
0 \rightarrow H \rightarrow S^{n} \rightarrow I / I^{2} \rightarrow 0
$$

be minimal presentations of W and I / I^{2}. Tensoring the two presentations we get the exact sequence

$$
L \otimes S^{n} \oplus S^{m} \otimes H \rightarrow S^{m} \otimes S^{n} \rightarrow W \otimes I / I^{2} \rightarrow 0
$$

Note that localizing at the associated primes of S we get, in both cases, that I / I^{2} is free. Thus, by [7] or [23], I is a generic complete intersection. As a consequence the module $W \otimes I / I^{2}$ has rank g as well. This means that the term on the left must map onto a free module of rank $m n-g$. By (2.1) we know that H has no nontrivial free summand so that if r is the maximum rank of a free summand of L we must have $r n \geq m n-g$. Since $r \leq m-1, g \geq n$ and thus I / I^{2} is a free R / I-module. By [7] or [23], I is then a complete intersection.

Remarks. (a) For the normal module, $\left(I / I^{2}\right)^{*}$, the assertion above is not entirely known. Note, however, that if $\operatorname{depth}(R / I) \leq 1$, then it follows from (2.3) that I / I^{2} has a free summand of rank g, and thus by [26] I must be a complete intersection.
(b) The module of differentials, $\Omega(R / I, K)$, could be added to the list of (4.1). In fact, $\mathrm{pd}_{R / I} \Omega(R / I, K) \leq 1$ is a characterization of local complete intersections (cf. [26]).
(c) The module of derivations, $\operatorname{Der}_{K}(R / I, R / I)$, being a dual module, is free in depth at most two. Taking into account the main result of [16], we would arrive at the same conclusion as (a).

We recall that there exists a canonical mapping (cf. [9, supplement])

$$
\operatorname{Ext}_{R}^{g}(R / I, R)=W \rightarrow\left(\bigwedge^{g} I / I^{2}\right)^{*}
$$

that is an isomorphism whenever I is a complete intersection in depth at most 1 (see also [20]). In the case of the modules of differentials or of derivations, we can also identify W to one of the following modules $(d=\operatorname{dim} R)$:

$$
\left(\bigwedge^{d-g} \Omega(R / I, K)^{* *}, \quad\left(\bigwedge^{d-g} \operatorname{Der}_{K}(R / I, R / I)\right)^{*}\right.
$$

Therefore, if E is one of the modules in the conjecture - excepting for $I / I^{2} \otimes W-$ then $W=\operatorname{det}(E)$ or $W=\operatorname{det}(E)^{*}$. (Recall: $\operatorname{det}(E)=\left(\wedge^{\prime} E\right)^{* *}$, where r is the generic rank of E. If E is a finitely generated S-module, of finite projective dimension, $\operatorname{det}(E)$ is an invertible ideal of S; see [17] for further details.)
(4.2) Divisor Theorem. Let R be a regular local ring (or, appropriately, a localization of a polynomial ring over a field of characteristic 0) and let I be an ideal. Denote by [W] the class of the canonical module of R / I in its the divisor class monoid. Then
(a) If $\operatorname{pd}_{R / I}\left(I / I^{2} \otimes W\right)<\infty$, then $(g-1)[W]=0$.
(b) If $\operatorname{pd}_{R / I}(E=$ one of the four other modules $)<\infty$, then $[W]=0$.

Proof. The cases in (b) follow from the preceding discussion, while (a) is a conse-
quence of (4.1) and the usual formula for the divisor associated to a tensor product.
4.3. Corollary. If $g=2$ and R contains a field, then I is a local complete intersection in all 5 cases.

Proof. The previous result says that I is a height 2 unmixed ideal and $\operatorname{Ext}_{R}^{2}(R / I, R)=$ R / I (locally), so that we can appeal directly to [6].

5. Koszul homology. II

At its simplest the relationship between the syzygies of an ideal I and those of I / I^{2} is already reflected in the exact sequences:

$$
\begin{equation*}
0 \rightarrow T_{2}^{S / R} \rightarrow H_{1} \rightarrow S^{2} \rightarrow I / I^{2} \rightarrow 0 \tag{i}
\end{equation*}
$$

and (under Cohen-Macaulay conditions and in the setting of the conjectures)

$$
\begin{equation*}
0 \rightarrow\left(I / I^{2}\right)^{*} \rightarrow S^{n} \rightarrow H_{n-g-1} \rightarrow T_{S / R}^{2} \rightarrow 0, \tag{ii}
\end{equation*}
$$

where the T 's denote the usual deformation functors (cf. [12]).
These sequences show already how intertwined the H_{i} 's are to the syzygetic properties of I.
(5.1) Proposition. Let I be an ideal of finite projective dimension. If H_{1} is Cohen-Macaulay, then $\operatorname{pd}_{S}\left(I / I^{2}\right)=0$ or ∞.

Proof. Since I is generically a complete intersection the hypothesis on H_{1} implies that $T_{2}^{S / R}=0$. At this point (2.1) applies.

There is an analogous result for $\left(I / I^{2}\right)^{*}$.
We point out now several instances where depth information on the Koszul homology is forthcoming. Assume, to simplify matters, that R is a regular local ring. In the sequel we may assume that I is a complete intersection on the punctured spectrum of R.
(a) Let I be an almost complete intersection, that is, $v(I) \leq g+1$. According to [1], depth $H_{1} \geq \inf \{\operatorname{dim} S, 2+\operatorname{depth} S\}>0$, so that if $\operatorname{pd}_{S}\left(I / I^{2}\right)<\infty$, from the sequence (i) we get that $T_{2}^{S / R}=0$ (since by assumption it has finite length) and H_{1} has finite projective dimension as well. Therefore H_{1} will be a module of rank one, satisfying Serre's S_{2} condition and of finite projective dimension. It is thus free; again (2.1) applies.
(b) If I is Cohen-Macaulay and $v(I) \leq g+2$, it is shown in [2] that the Koszul homology is Cohen-Macaulay (see also [13]). What is not known is whether the conjecture holds true for all the cases with $v(I)=g+2$, e.g. for a non Cohen-Macaulay
ideal of height 3 and 5 generators.
(c) A broad class of cases is taken care by a theorem of Huneke [14] who proved that the property "the Koszul homology is Cohen-Macaulay" is an invariant of the even linkage class of the ideal. It follows that if I is in the linkage class (not just even linkage class) of a complete intersection then its Koszul homology is CohenMacaulay. This extends the validity of the conjecture (for I / I^{2}) to Gorenstein ideals of height 3 and, therefore, by (4.1), to all Cohen-Macaulay ideals of height 3.
(d) A weaker version of (c) above is more widely observed: that depth $H_{i} \geq$ $n-g+i$, a condition labelled 'sliding depth'. It is also an invariant of even linkage. Furthermore (cf. [13]): If I / I^{2} is torsion-free, then H_{1} is Cohen-Macaulay. This requires that R be a Gorenstein ring; it is now known whether the higher homology modules are also Cohen-Macaulay.

6. Low projective dimension

We now look at estimates for $c(I)$ for an ideal I where $\operatorname{pd}_{R / I}\left(I / I^{2}\right)$ is at most 3 . We may assume that R is a local ring of dimension d and that I is a complete intersection on the punctured spectrum of R, that is, $d=c(I)$. Let

$$
0 \rightarrow S^{p} \rightarrow S^{q} \rightarrow S^{m} \rightarrow S^{n} \rightarrow I / I^{2} \rightarrow 0
$$

be a minimal resolution of I / I^{2} as an $S(=R / I)$-module.
(6.1) Proposition. In the situation above assume further that 2 is invertible in R. We then have:
(a) $n+1+p \geq d$;
(b) $m \geq\binom{ n+1}{2}-g-p$.

Proof. (a) Because of (2.1a) we have only to determine the locus where the mapping $S^{q} \rightarrow S^{m}$ has a free summand of S^{m} for its image. Note that it has rank $t=q-p$. Taking into account that the sequence splits on the punctured spectrum of S we obtain, from (1.2), the following estimate

$$
m+q-2(q-p)+1 \geq \operatorname{dim}(S)=d-g
$$

which is a rephrasing of (a).
(b) Consider a presentation of I

$$
\begin{gathered}
0 \rightarrow Z_{2} \rightarrow R^{m} \rightarrow R^{n} \rightarrow I \rightarrow 0 \\
Z_{1}
\end{gathered}
$$

Tensoring with S we get the exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Tor}_{1}^{R}(I, S) \rightarrow Z_{1} \otimes S \rightarrow S^{n} \rightarrow I / I^{2} \rightarrow 0, \\
& 0 \rightarrow \operatorname{Tor}_{2}^{R}(I, S) \rightarrow Z_{2} \otimes S \rightarrow S^{m} \rightarrow Z_{1} \otimes S \rightarrow 0 .
\end{aligned}
$$

By the hypothesis above the kernel L of the composite map

$$
S^{m} \rightarrow Z_{1} \otimes S \rightarrow \operatorname{ker}\left(S^{n} \rightarrow I / I^{2}\right)
$$

has projective dimension at most one and rank $m-n-g=g-p-$ since I / I^{2} has generic rank g.

On the other hand, since $1 / 2 \in R$, the anti-symmetrization map $\Lambda^{2} I \rightarrow I \otimes I$ splits and therefore $\wedge^{2} I$ splits off the torsion submodule of $I \otimes I$ - that is, off $\operatorname{Tor}_{1}^{R}(I, S)$ - as well (see [21] for further details). Since, by the snakc Icmma, L maps onto $\operatorname{Tor}_{1}^{R}(I, S)$, its minimal number v of generators must be at least $\binom{n}{2}$.

We thus have $v \leq m-n+g+p$, so that (b) follows.
(6.2) Corollary. Let I be a Cohen-Macaulay ideal of height 4. If $\operatorname{pd}_{S}\left(I / I^{2}\right) \leq 3$ and $p<12$, then I is a complete intersection.

Proof. Since I must be a Gorenstein ideal (cf. 4.2), we have $m=2 n-2$. We may assume that $n>6$ (cf. Section 5). Now use (b).

References

[1] Y. Aoyama, A remark on almost intersections, Manuscripta Math. 22 (1977) 225-228.
[2] L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z. 175 (1980) 249-280.
[3] W. Bruns, The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals, Proc. A.M.S. 83 (1981) 19-24.
[4] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977) 447-485.
[5] J. Eagon and D.G. Northcott, Ideals defined by matrices and a certain complex associated with them, Proc. Royal Soc. 269 (1962) 188-204.
[6] E.G. Evans and P. Griffith, The syzygy problem, Annals of Math. 114 (1981) 323-333.
[7] D. Ferrand, Suite régulière et intersection complète, C.R. Acad. Sci. Paris 264 (1967) 427-428.
[8] G. Faltings, Ein kriterium fur vollständige Durchschnitte, Invent. Math. 62 (1981) 393-401.
[9] A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Seminaire Bourbaki 149 (Paris, 1957).
[10] T. Gulliksen and G. Levin, Homology of Local Rings, Queen's Paper in Pure and Applied Math. 20 (Queen's University, Kingston, Canada, 1969).
[11] R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension, Comm. in Algebra 1 (1974) 415-437.
[12] J. Herzog, Homological properties of the module of differentials, Atlas VI Escola de Algebra, 33-64 (IMPA, Rio de Janeiro, 1980).
[13] J. Herzog, W.V. Vasconcelos and R. Villarreal, Ideals with sliding depth, Nagoya Math. J., to appear.
[14] C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043-1062.
[15] C. Huneke, Criteria for complete intersections, Preprint, 1984.
[16] J. Lipman, Free derivation modules, Amer. J. Math. 87 (1965) 874-898.
[17] R. MacRae, On an application of the Fitting invariants, J. Algebra 2 (1965) 153-169.
[18] H. Matsumura, Commutative Algebra (Benjamin/Cummings, Reading, MA, 1980).
[19] D.G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Phil. Soc. 50 (1954) 145-158.
[20] E. Platte, Zur endlichen homologischen Dimension von Differentialmoduln, Manuscripta Math. 32 (1980) 295-302.
[21] A. Simis and W.V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981) 203-224.
[22] L. Szpiro, Variétés de codimension 2 dans P^{n}, Colloque d'Algèbre de Renes (1972), exposé 15.
[23] W.V. Vasconcelos, Ideals generated by R-sequences, J. Algebra 6 (1967) 309-3I6.
[24] W.V. Vasconcelos, On the homology of I / I^{2}, Comm. in Algebra 6 (1978) 1801-1809.
[25] W.V. Vasconcelos, The conormal bundle of an ideal, Atas V Escola de Algebra, 111-165 (INIPA, Rio de Janeiro, 1978).
[26] W.V. Vasconcelos, A note on normality and the module of differentials, Math. Z. 105 (1968) 291-293.

[^0]: * Partially supported by NSF grant DMS-8301870.

